

National Education Society (R.) Jawaharlal Nehru New College of Engineering, Shivamogga (Approved by AICTE, New Delhi, Certified by UGC 2f & 12B, Accredited by NAAC - B', UG

(Approved by AICTE, New Delhi, Certified by UGC 2f & 12B, Accredited by NAAC –'B', UG programs:CE,ME,EEE,ECE,CSE,ISE, ETE PG Programs: MBA, acredited by NBA:1.7.2022 to 30.6.2025, Recognized by Govt. of Karnataka and Affiliated to VTU, Belagavi)

INTERNAL QUALITY ASSURANCE CELL (IQAC)

Sl.No	Branch	Sem	Subject	CO,S
1	ECE	3	Transform Calculus, Fourier Series and Numerical Techniques Mathematics (18MAT31)	 Use the knowledge of Laplace and inverse Laplace transform in solving differential/integral equations arising in network analysis, control system and other fields of Engineering. Apply the concept of Fourier series, Fourier transform and their application in communication system and digital signal processing and Z- transform in the field of signals and systems Solve first order and 2 nd order Differential equation by adopting Numerical methods Examine the externals of functional using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis problems
2		3	Network Theory (18EC32)	 Apply suitable techniques and theorems to compute currents and voltages in electrical networks. Analyse electrical networks under transient conditions. Apply Laplace Transform to compute network parameters

2018 Scheme

				4. Design the resonant circuits and two port
				networks using related parameters.
				5. Simulate the electrical networks using
				simulator software to verify the solutions to
				networks.
				1. Understand the basic principles and
				characteristics of semiconductor diodes.
				2. Apply the basic knowledge of
				semiconductor devices in the design of BJT
				3. Apply the basic principles of
			Electronic Devices	semiconductors in the design of FETs and
3		3	(18EC33)	also to determine the characteristics and
				behaviour of LDR, Photodiode and
				determination of resistance using various
				bridges
				4. Apply the principles of semiconductors
				physics in the fabrication process.
	-		Digital System Design (18EC34)	1. Explain the concept of combinational and
		3		sequential logic circuits
				2. Design the combinational logic systems.
4				3. Design the sequential circuits using SR,
4				JK, D,T flip flops and mealy & moore
				machines.
				4. Design applications of combinational &
				sequential circuits.
				1. Explain the basic organisation of computer
				systems.
				2. Apply the basic concept of programming
_			Computer Organization	in designing simple programs
5		3	& Architecture (18EC35)	3. Identify different types of semiconductor
				and other secondary storage memories.
				4. Conduct a detailed study on various
				Microprocessor systems.
			Power Electronics &	1. Understand the principle of operation and
6		3	Instrumentation (18EC36)	characteristics of SCR and UJT

				2. Apply the basic principles of SCRs in
				designing converter/inverter circuits
				3. Apply principles of measuring instruments
				to understand different measuring
				instruments
				4. Apply basic knowledge of instrumentation
				in understanding transducers and PLCs
				1. Design and study different applications of
				diode.
				2. Demonstrate the characteristics of Zener
7		2	Electronic Devices &	diode, LDR, photo diode and SCR.
/		3	Laboratory (18ECL37)	3. Verify the characteristics and applications
				of SCR and LDR.
				4. Simulate the characteristics of
				semiconductor devices using PSpice EDA.
		3	Digital System DesignLaboratory (18ECL38)	1. Demonstrate the truth table of various
				expressions and combinational circuits using
				Logic gates
				2. Design various combinational circuits
				such as adders, subtractors, comparators,
8				multiplexers and demultiplexers
				3. Design Flip flops, counters and shift
				registers
				4. Simulate Serial adder and Binary
				Multiplier
				1. Remember the concept of probability to
				solve the problems on probability
				distribution and joint probability distribution.
			Complex Analysis,	2. Understand the concept of correlation,
10		4	Probability And Statistical Matheda	regression and curve fitting.
			(18MAT41)	3. Demonstrate testing of hypothesis of
				sampling distribution.
				4. Apply the knowledge of complex
				differentiation and complex integration in
	1	1	I	

				diverse fields related to field theory and
				signal processing.
				1. Solve rank of matrix by elementary row
				operations - Echelon form. Consistency of
				system of linear equations - Gauss
				elimination method
				2. Demonstrate various physical models
				through 2 nd and higher order linear
				differential equation and solve such
11		4	Additional Mathematics - 2 (18MATDIP41)	equations.
			2 (10007101141)	3. Construct a variety of Partial differential
				equation and solution by direct integration,
				method of separation of variables.
				4. Apply the knowledge of numerical
				methods, infinite series and series solution of
				ordinary differential equation to explain
				various physical and engineering problems.
		1	Analog Circuits (18EC42)	1. Understand the biasing of BJTs, FETs and
				functioning of linear ICs
				2. Interpret the basics of semiconductor
10				devices
12		4		3. Analyze the applications of semiconductor
				devices
				4. Design applications using semiconductor
				devices
				1. Develop the mathematical model of
				mechanical and electrical systems and find a
				transfer function from block diagram and
				signal flow graph method
13		4	Control Systems	2. Understand time domain specifications for
			(16EC+3)	first and second-order system
				3. Determine the stability of a system in the
				time the domain using Route Harvitz criteria
				and root locus technique

				4. Determine the stability of a system in the
				frequency the domain using Nyquist and
				bode plots
				5. Model a control system in continuous and
				discrete-time using state variable techniques
				1. Apply the concept of Random Variables
				and Random Processes in Communication
				System.
				2. Model the Random events in typical
				communication events to extract quantitative
				statistical parameters.
14		4	Engineering Statistics &	3. Analyze typical signal sets in terms of
			Linear Algebra (18EC44)	basis function of amplitude, phase and
				frequency.
				4. Demonstrate by way of simulation or
				emulation the ease of analysis employing
				basis functions, statistical representation and
				Eigen values.
				1. Understand mathematical description and
				representation of continuous and discrete
				time signals and systems and classify them.
				2. Apply the properties of impulse response
				to determine output and characteristics of
				Linear Time Invariant Systems (LTI)
			Signala & Swatama	systems. (Convolution Sum, Convolution
15		4	(18EC45)	Integral and classification)
				3. Analyze the LTI Systems in time and
				transform domains. (ZT, FS, FT and DTFT)
				4. Write MATLAB program to apply
				transform on a speech signal and analyse the
				frequency domain signal for the spectral
				(frequency) components.
			Mioro controllor	1. Apply the basic knowledge of processor
16		4	(18EC46)	architecture in Embedded System design
			` '	, U

				2. Design 8051 microcontroller based
				programs using assembly / high-level
				language
				3. Design programs based on timers and
				interrupts
				4. Design interfacing circuits to 8051
				Microcontroller
				5. Design microcontroller based system
				1. Have constitutional knowledge and legal
				literacy.
			Constitution of India,	2. Understand Engineering and Professional
17		4	Professional Ethics and Cyber Law (18CPC49)	ethics and responsibilities of Engineers.
				3. Understand the cybercrimes and cyber
				laws for cyber safety measures.
				1. Develop ALP for solving simple
			Microcontroller Laboratory (18ECL47)	applications that manipulates data
	18	4		2. Interface various I/O devices to
18				Microcontroller
				3. Demonstrate Serial communication using
				High level language program
				4. Design a Microcontroller based system
				1. Design analog circuits using BJT/FETs
				and evaluate their performance
				characteristics
19		4	Analog Circuits	2. Design analog circuits using OPAMPs for
			Laboratory (18ECL48)	different applications
				3. Simulate and analyze analog circuits for
				different electronic applications.
				1. understand the fundamental concepts of
			Technological Innovation	Management and Entrepreneurship
20		5	Management And	2. Understand the role of organization
			(18ES51)	structure, staffing, motivation in
				management

				3. Describe Functions of managers,
				Entrepreneurs and their social
				Responsibilities.
				4. Compare various ideas for creativity and
				Innovation in Family business.
				5. Analyse various business models for
				Marketing and Financial opportunities.
				1. Determine the frequency response of
				different signals using DFT
				2. Apply the properties of DFT in signal
				analysis and filtering of long data sequences.
01		_	Digital Signal Processing	3. Analyse the computation of DFT using
21		5	(18EC52)	filtering techniques.
				4. Develop FIR and IIR filters using different
				techniques.
				5. Understand the DSP processor
				architecture.
		5	Principles of Communication Systems (18EC53)	1. Compare the performance of different
				types of amplitude modulation schemes
				2. Analyse angle modulation schemes and its
				effects in time and frequency domain
22				3. Analyse the effect of noise in analog
				modulation systems
				4. Apply the concepts of sampling process
				and waveform coding techniques on different
				types of signalling
				1. Apply the basic concept of information
				theory to characterize Dependent &
				Independent Sources
		_	Information Theorv &	2. Apply Source Encoding Algorithms to
23		5	Coding (18EC54)	encode the data
				3. Model the continuous and discrete
				communication channels using input, output
				and joint probabilities

				4. Design the error control encoding and
				decoding circuits
				5. Design a communication system
				incorporating advanced coding algorithms
				1. Understand the basic concepts of electric
				field
				2. Explain the magnetic field, time varying
				fields and uniform plane wave.
24		5	Electromagnetic Waves	3. Apply the concepts of electric field in
			(18EC55)	solving numerical problems.
				4. Solve numerical problems on Magnetic
				fields, time varying fields and plane
				waves.
				1. Identify the suitable Abstraction level for
			Verilog HDL (18EC56)	a particular digital design.
		5		2. Interpret the various constructs in logic
				synthesis.
25				3. Design and verify the functionality of
				digital circuits/systems in different
				abstraction levels using test benches.
				4. Design digital circuits effectively using
				Verilog tasks, functions and directives.
				1. Simulate discrete/digital signals using
				MATLAB.
				2. Develop a SCILAB program to simulate
				signal processing operations.
26		5	Digital Signal Processing	3. Design of IIR and FIR - low pass and high
			Laboratory (Toleclor)	pass filters.
				4. Implement DSP algorithms on DSP
				processor TMS320C6713 floating point
				Processor using C language.
				1. Design, simulate and analyze HDL
~ ~ ~		~	HDL Laboratory	programs for Combinational circuits in
27		5	(18ECL58)	Dataflow, Behavioral and Gate level
27				

				2. Design, simulate and analyze HDL
				programs for Sequential circuits in
				Behavioral level of abstraction.
				3. Synthesize Combinational and Sequential
				circuits on programmable ICs and test the
				hardware.
				4. Interface the hardware to the
				programmable chips and analyze their
				functionality
				1. Explain the basic concepts of digital
				communication system.
				2. Apply the knowledge of signal
			Digital Communication (18EC61)	representation and transmission over AWGN
				channels.
		6		3. Analyze the performance of a digital
				communication system in light of
28				transmission over AWGN channels and
				band-limited channels
				4. Design the transmitter and receiver for
				signaling over AWGN channels and band-
				limited channels.
				5. Design communication and signaling
				subsystem using open source tools
				1. Understand the basic hardware
				components and their selection method based
				on the characteristics and attributes of an
				embedded system
				2. Apply the basic knowledge of processor
			Embedded Systems	architecture in Embedded System design
29		6	(18EC62)	3. Use the knowledge of RTOS in Embedded
				system design
				4. Develop ARM Cortex M3 based programs
				using assembly / high-level language
				5. Design simple embedded application
				prototype

30	6	Microwave & Antennas (18EC63)	 Explain the working of microwaves sources, devices and antennas. Apply the network theory to find out parameters of microwaves and transmission lines and microwaves passive devices. Apply the electromagnetic theory to calculate antenna parameters. Illustrate the concepts of microwave transmission lines and antennas using numerical examples.
31	6	Data Structures using C++ (18EC643)	 Explain fundamentals of data structures and their applications essential for programming/problem solving Analyze Linear Data Structures: Stack, Queues, Lists Analyze Non Linear Data Structures: Trees Assess appropriate data structure during program development/Problem Solving
32	6	Digital System Design using Verilog (18EC644)	 Construct the combinational circuits using discrete gates and programmable logic Describe Verilog model for Sequential circuits and test pattern generation Design a Semiconductor Memory for Specific chip design Design Embedded systems using Microcontrollers and synthesize different types of Processor and I/O controllers that are used in Embedded Systems
33	6	Python Application Programming (18EC646)	 Examine Python syntax and semantics and be fluent in the use of Python flow control and functions. Demonstrate proficiency in handling Strings and File Systems.

				3. Create, run and manipulate Python
				Programs using core data structures like
				Lists, Dictionaries and use Regular
				Expressions.
				4. Interpret the concepts of Object-Oriented
				Programming as used in Python.
				5. Implement exemplary applications related
				to Network Programming, Web Services and
				Databases in Python.
				1. Develop assembly language programs
				using ARM Cortex M3 for
				different applications
34				2. Interface external devices and I/O with
		6	Embedded Systems Laboratory (18ECL66)	ARM Cortex M3
0.		Ũ		3. Develop C language programs and library
				functions for embedded system applications
				4. Design simple embedded application
				prototype
				1. Determine the characteristics and
				response of microwave devices
		6	Communication Laboratory (18ECL67)	2. Demonstrate the characteristics of micro
				strip antennas and devices and compute the
35				parameters associated with it.
				3. Design and test the Analog/digital
				modulation circuits/systems
				4. Measure guided wavelength, VSWR and
				attenuation in microwave test bench
				1. Consolidate the literatures referred to
				identify and formulate the engineering
				problem
				2. Arrive at a list of available engineering
36		6	Mini-project (18ECMP68)	tools that may be used for solving the
				identified engineering problem
				3. Design the hardware / software
				related to work undertaken

				4. Analyse and interpret results of
				experiments conducted on the designed
				solution(s) to arrive at result based
				conclusion
				5. Demonstrate professional skill-sets
				1. Explain the basic concepts of data
				communications, networking and topology
				of wired / wireless networks.
				2. Apply the knowledge of data link layer,
				and network layer communication protocol
			Computer Networks	design.
37		7	(18EC71)	3. Understand the transport layer and
				application layer protocols in
				communication network
				4. Design and simulate the networking
				concepts and protocols using
				C/C++/opensource programming.
			VLSI Design (18EC72)	1. Apply the knowledge of MOS transistor
				theory to understand its characteristics,
				CMOS fabrication process and technology
				scaling
				2. Design the given logic function using stick
		7		diagrams and layout with the knowledge of
38				physical design aspects (capacitance
				estimation and delay models).
				3. Design of combinational, sequential and
				dynamic circuits using MOS devices.
				4. Design the memory elements and
				understand the concept of testing and
				testability issues in VLSI design
				1. Define the general terminology of digital
				image processing.
39		7	Digital Image Processing	2. Explain various types of image
57			(18EC733)	enhancement techniques in spatial domain
				and frequency domain.
				······································

				3. Describe the methodologies for image
				restoration, Morphology and colour image
				processing.
				4. Design the image processing techniques
				using modern tool
				1. Explain the basic concepts of IoT and
				WSN
				2. Understand the application of basic
				principles of Internet and cloud services in
40		7	IOT & Wireless Sensor	IoT domain
			Networks (TOEC /41)	3. Design software for IoT/WSN based
				applications
				4. Apply the basic networking principles in
				analyzing Wireless sensor networks
			Cryptography (18EC744)	1. Explain basic cryptographic algorithms to
				encrypt and decrypt the data.
		7		2. Design symmetric and asymmetric
	41			cryptography algorithms to encrypt and
41				decrypt the information.
				3. Apply concepts of modern algebra in
				cryptography algorithms.
				4. Apply pseudo random sequence in stream
				cipher algorithms.
	_			1. Identify the problems in machine learning
				2. Select supervised, unsupervised and
				reinforcement learning for problem solving.
10		-	Machine Learning with	3. Apply theory of probability and statistics
42		/	Python (18EC745)	in machine learning and perform statistical
				analysis of machine learning techniques.
				4. Apply concept learning, ANN, Bayes
				classifier nearest neighbour.
				1. Construct the combinational circuits using
40		-	Digital Systems Design using VHDL (18EC754)	discrete gates and programmable logic
43		1		2. Describe VHDL model for combinational
				and Sequential circuits
l		L	1	

				3. Design Semiconductor memory,
				Programmable logic devices and
				Programmable Array Logic
				4. Describe Synthesis, Hardware testing and
				Test ability
				1. Understand the services offered by
				different layers using connecting devices and
				analyze the performance parameters.
				2. Model and Analyze packet /file
				transmission between nodes for
44		7	Computer Networks Lab	wired/wireless local area network (LAN)
			(18ECL76)	(TCP/UDP) using NCTUNs.
				3. Simulate the networking concepts and
				protocols using C/C++ programming
				4. Analyze and Compare the performance of
				routing algorithms.
			VLSI Laboratory (18ECL77)	1. Design the schematic and Layout of
		7		CMOS based Inverter & given logic
45				functions (NAND)
				2. Design the schematic and Layout of
				CMOS Amplifier circuits.
				3. Analyze the CMOS circuits using various
				simulations and Layout techniques.
				4. Develop Verilog Codes to realize the
				Digital Circuits.
				1. Consolidate the literatures referred to
				identify and formulate the engineering
				problem
				2. Identify the community that shall benefit
			Droject Work Dhase 1	through the solution to the identified
46		7	Project Work Phase - 1 (18ECP78)	engineering problem and also demonstrate
				concern for environment
				3. Arrive at a list of available engineering
				tools that may be used for solving the
				identified engineering problem

				4. Engage in effective oral and written
				communication by recording every stages
				of project work
				5. Able to perform in a team, contribute to the
				team and mentor/lead the team
				1. Explain network security services and
				mechanisms and security concepts.
				2. Understand the concept of Transport Level
				Security and Secure Socket Layer.
		_	Network Security	3. Explain Security concerns in Internet
47		8	(18EC821)	Protocol security
				4. Explain Intruders, Intrusion detection, and
				Malicious Software
				5. Describe Firewalls, Firewall
				Characteristics, Biasing, and Configuration
			Optical Communication Networks (18EC824)	1. Apply basic knowledge of fiber optics to
		8		model optical communication system
				2. Analyze losses in optical communication
48				3. Design optical transceiver system
				4. Illustrate the networking aspects of optical
				fiber and describe various standards
				associated with it
		8		1. Acquire fundamental knowledge about a
				specific technical domain
				2. Design the hardware/software related to
49			Internship (18ECI85)	the work undertaken
				3. Analyze the results of the work carried out
				4. Demonstrate the professional skill-sets
				1. Understand fundamental knowledge about
				a specific technical domain
		8	Project Work Phase 2 (18ECP83)	2. Design the hardware / software related to
50				work undertaken
				3. Analyse and interpret results of
				experiments conducted on the designed

			solution(s) to arrive at result based conclusion
			4. Demonstrate the professional skill-sets
			5. Work in a team and perform as a leader with othical concern
			1 A covira fundamental knowledge about a
51	8	Technical Seminar (18ECS84)	specific technical domain
			2. Identify promising problems and new directions of various autting adapted
			technologies
			3. Develop individual and team work by
			having interaction with peers
			4. Demonstrate the presentation, professional
			and communication skills

2021 Scheme

1 To solve ordinary differentia
1 ECE 3 Transform Calculus, Fourier Series and Numerical Techniques (21MAT31) 3 Transform Calculus, Fourier Series and Numerical Techniques (21MAT31) 3 To use Fourier transforms problems involving continuous-t and to apply Z-Transform techniques by initial or boundary value involving partial differential equations

				problems arising in dynamics of rigid bodies
				and vibrational analysis.
				1. Simplify Boolean functions using K-map
				and Quine-McCluskey minimization
				technique.
				2. Analyze and design for combinational
				logic circuits.
2		3	Digital System Design	3. Analyze the concepts of Flip Flops (SR, D,
			using vernog (21LC32)	T and JK) and to design the synchronous
				sequential circuits using Flip Flops.
				4. Model Combinational circuits (adders,
				subtractors, multiplexers) and sequential
				circuits using Verilog descriptions.
				1. Understand the basics of linear algebra
			Basic Signal Processing (21EC33)	(vector space and Eigenvalues)
				2. Understand mathematical description and
3		3		representation of discrete-time signals and
				systems and classify them.
				3. Apply the properties of the impulse
				response to determine the output and
				characteristics of Linear Time Invariant
				Systems (LTI) systems. (Convolution Sum
				and classification)
				4. Analyse the discrete LTI Systems in Z-
				transform.
				5. Write a MATLAB/Sci-lab/Python
				program to analyse the basics of linear
				algebra and properties of discrete time
				signals with its transforms.
				1. Understand the biasing of BJTs, FETs and
		3		functioning of linear ICs
4			Analog Electronics Circuits (21EC34)	2. Analyse the principle of operation and
4				characteristics of SCR and UJT
				3. Interpret the basics of semiconductor
				devices
				1

				4. Analyze the applications of semiconductor
	-			devices
				1. Have constitutional knowledge and legal
				literacy.
			Constitution of India and	2. Understand Engineering and Professional
5		3	Professional Ethics (21CIP37)	ethics and responsibilities of Engineers
				3. Understand the cybercrimes and cyber
				laws for cyber safety measures.
				1. Design and analyze the basic applications
				of op-amp.
				2. Design and analyze the various linear
C		2	LIC Lab using Pspice /	applications of op-amp.
0		3	MultiSIM (21EC383)	3. Design and analyze the various non-linear
				applications of op-amp.
				4. Analyze the performance of oscillators and
				multi vibrators and filters using pspice.
			Analog & Digital Electronics Lab (21ECL35)	1. Design and analyze the BJT/FET amplifier
				and oscillator circuits
				2. Design and test Opamp circuits to realize
				the mathematical computations, DAC and
		3		precision rectifiers
7				3. Design and test the combinational logic
				circuits for the given specifications
				4. Test the sequential logic circuits for the
				given functionality.
				5. Demonstrate the basic electronic circuit
				experiments using SCR and 555 timer
				1. Enable the student to do a deep drive into
				societal challenges being addressed by
0			Social Connect and	NGO(s), social enterprises & The
ð		5	Responsibility (21SCR36)	government and build solutions to alleviate
				these complex social problems through
				immersion, design & technology.

				2. Provide a formal platform for students to
				communicate and connect with their
				surroundings.
				3. Enable to create of a responsible
				connection with society
				1. Use the concept of Analytic function and
				complex potential to solve the problems in
				electromagnetic theory and complex
				integration in airfoil and image processing.
			2. Obtain series solution ODEs	
9		4	Maths for Communication	3. Fit an appropriate mathematical model for
			Engineers (21MAT41)	the statistical data by using correlation and
				regression analysis.
				4. Apply discrete and continuous probability
				distribution in engg. field
				5. Construct joint probability distribution
				and testing the hypothesis
			Digital Signal Processing (21EC42)	1. Determine response of LTI systems using
				time domain and DFT techniques
				2. Compute DFT of real and complex discrete
		4		time signals
10				3. Compute DFT using FFT algorithms
				4. Design FIR and IIR Digital Filters
				5. Design of Digital Filters using DSP
				processor
				1. Analyse and solve Electric circuit, by
				applying, loop analysis, Nodal analysis and
				by applying network Theorems.
				2. Evaluate two port parameters of a network
11		4	Circuits & Controls	and Apply Laplace transforms to solve
11		4	(21EC43)	electric networks.
				3. Deduce transfer function of a given
				electrical system, from differential equation
				representation or Block Diagram
				representation and SFG representation.

				4. Calculate time response specifications and
				analyse the stability of the system.
				5. Draw and analyse the effect of gain on
				system behaviour using root loci.
				6. Perform frequency response Analysis and
				find the stability of the system.
				7. Represent State model of the system and
				find the time response of the system.
				1. Compare the performance of different
				types of amplitude modulation schemes
				2. Analyze angle modulation schemes and its
				effects in time and frequency domain.
12		4	Communication Theory	3. Analyze the effect of noise in analog
			(21EC44)	modulation systems
				4. Apply the concepts of sampling process
				and waveform coding techniques on
				differenttypes of signals.
				1. To help the students appreciate the
				essential complementarity between
				'VALUES' and 'SKILLS' to ensure sustained
				happiness and prosperity which are the core
				aspirations of all human beings.
				2. To facilitate the development of a Holistic
				perspective among students towards life and
				profession as well as towards happiness and
			Universal Human Values	prosperity based on a correct understanding
13		4	(21UH49)	of the Human reality and the rest of existence.
				Such a holistic perspective forms the basis of
				Universal Human Values and movement
				towards value-based living in a natural way.
				3. To highlight plausible implications of such
				a Holistic understanding in terms of ethical
				human conduct, trustful and mutually
				fulfilling human behaviour and mutually
				enriching interaction with Nature.

				1.Demonstrate the DSP concepts on signal
				generation and sampling using Scilab/Octave
				2. Design and verify the computation of
				discrete signals using Scilab/Octave.
				3. Demonstrate and verify the application of
			Octave / Scilab for signals (21EC483)	FFT/DFT algorithm for a given signal using
14		4		Scilab/Octave.
				4. Design and demonstrate programs to
				evaluate different types of low and high pass
				FIR filters using Scilab/Octave.
				5. Design, demonstrate and visualize
				different real world signals using
				Scilab/Octave programs.
			Communication Laboratory I (21ECL46)	1. Demonstrate the AM and FM modulation
				and demodulation by representing the signals
				in time and frequency domain.
				2. Design and test the sampling,
15		4		Multiplexing and PAM with relevant circuits.
15				3. Demonstrate the basic circuitry and
				operations used in AM and FM receivers.
				4. Illustrate the operation of PCM and delta
				modulations for different input conditions.